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Hofmeister effect and the phase diagram of lysozyme
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The phase diagrams for lysozyme are calculated for two different precipitant salts, NaCl and NaSCN, using
a potential of mean force that takes into account contributions from ion-dispersion forces [M. Bostrom et al.,
J. Phys. Chem. B 110, 24757 (2006)]. Our results are consistent with a recent perturbation theory calculation
(referenced above) in that the phase diagram for lysozyme with NaCl is quite different than for lysozyme with
NaSCN for the same molar concentration (0.2 M). However, in contrast to the perturbation theory calculation,
we find that the lysozyme phase diagram with NaCl has a metastable fluid-fluid coexistence curve and that the
metastability gap in the case of NaSCN is much larger than predicted by perturbation theory.
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I. INTRODUCTION

In the late 1800s, Hofmeister and his colleagues [ 1] found
that salts with common cation (positive ion) but different
anions (negative ions) have different levels of effectiveness
in stabilizing colloidal solutions. These salt anions can be
arranged in a universal sequence known as the Hofmeister
series. This effect is of widespread importance, including the
precipitation of proteins from solution, the surface tension of
salt solutions, ions binding to micelles, colloid stability,
transport across red blood cells, and the cutting efficiency of
DNA in buffered salt solutions (see, e.g., [2,3] for refer-
ences). Understanding the Hofmeister effect has been a ma-
jor challenge for theorists, since the classical Derjaguin-
Landau-Verwey-Overbeek (DLVO) theory of interparticle
interactions in colloid science depends only on the salt con-
centration and not on the salt type. This theory treats colloid
stability in terms of a balance between attractive van der
Waals forces and repulsive double-layer forces between the
solute particles. Many phenomenological arguments have
been proposed to explain the Hofmeister effects, including
the idea that ions exert their effect indirectly by changing the
water structure. For example, one talks about “chaotropic”
and “cosmotropic” ions, ‘“hard and soft ions,” etc. None of
these ideas, however, has produced a quantitative theory of
the effect. However, in 1997, Ninham and Yaminsky [4] pro-
posed that the ionic dispersion potential between the salt ion
and solute particle, neglected in the DLVO theory, might
provide a partial explanation of the Hofmeister effect. Since
then, a series of papers have been written applying this idea
to a variety of examples of the Hofmeister effect, including
the important case of globular proteins in solution [2,3,5-9].

Understanding the Hofmeister effect in globular proteins
in aqueous electrolyte solutions is of particular importance,
since the phase transitions, self-assembly, and aggregation of
proteins in solution are of fundamental and practical impor-
tance [2]. For example, it is important to understand the ini-
tial conditions necessary to grow high-quality protein crys-
tals, including the important role of the precipitating agent,
such as salt, in order to prepare defect-free samples that are
suitable for x-ray crystallography. In addition, there are sev-
eral diseases that result from undesired protein condensation
(aggregation) from solution. These include sickle cell anemia

1539-3755/2008/78(1)/011921(6)

011921-1

PACS number(s): 87.15.ak, 87.15.km, 87.15.kr, 87.15.Z¢g

[10-12], certain types of cataracts [13,14], and Alzheimer’s
disease [15,16]. Thus, understanding the physical conditions
that led to such condensation is important in order to deter-
mine the possible means by which to slow down or prevent
the process from occurring. As a consequence, it is of great
importance to understand the Hofmeister effect on the phase
diagram and crystal nucleation rate of aqueous solutions of
proteins. In this paper, we focus on the role of salt on equi-
librium properties; in particular, we calculate the phase dia-
gram of lysozyme for both sodium chloride and sodium thio-
cyanate, using a recent calculation of the lysozyme potential
of mean force (PMF) that includes the effect of the ion-
dispersion forces for these salts [17]. Their calculation of the
PMF also includes a screened Coulomb interaction between
the lysozyme molecules. In Ref. [17], Bostrom er al. have
shown that the inclusion of ion-specific dispersion potentials
gives rise to ion-specific phase diagrams, as one would ex-
pect for systems that exhibit the Hofmeister effect. Bostrom
et al. examined a model for which they considered the effect
of three distinct monovalent salts with different anions on the
phase diagram of the solute: NaCl, NaSCN, and Nal. Their
results show that the potentials of mean force between the
lysozyme molecules become more attractive from NaCl to
Nal to NaSCN, which is consistent with the experimental
observation that NaSCN is more effective in precipitating
hen-egg-white (HEW) lysozyme. Using their salt-based PMF
contribution to the total potential, they calculated phase dia-
grams for the three electrolyte solutions by using a first-order
Barker-Henderson perturbation theory [18,19] for the liquid
and the solid phases, and they found that the three phase
diagrams were qualitatively different. In particular, they
found that the liquid-liquid curve was stable with respect to
the solubility curve for NaCl and metastable for NaSCN.

It is well known that a first-order perturbation theory is
not quantitatively accurate; thus it is of interest to obtain
more accurate phase diagrams for these systems. In this pa-
per, we address this question using the Bostrom et al. model
[17] for two salts, NaCl and NaSCN, to predict the corre-
sponding phase diagrams using systematic Monte Carlo tech-
niques. In particular, we investigate the predicted stability
and metastability of the fluid-fluid phase for NaCl and
NaSCN, respectively, obtained from perturbation theory. Our
results show that in contrast to the prediction of perturbation
theory, the fluid-fluid phase separation curve is metastable
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for the case of NaCl. In addition, the metastability gap we
obtain for the case of NaSCN is greater than predicted by
perturbation theory.

The remainder of the paper is as follows. In Sec. II we
summarize the model, while in Sec. III we review the rel-
evant simulation techniques necessary to obtain the liquid-
liquid and liquid-solid phase diagrams. In Secs. IV and V, we
present a discussion of our resulting phase diagrams and a
brief conclusion, respectively.

II. MODEL AND SIMULATION TECHNIQUES
A. Model

Using Monte Carlo simulations, Bostréom er al. [17] cal-
culated the PMF, Wy, between two macroions that mimic
lysozyme molecules in an aqueous salt solution, by fixing the
distance between the macroions and allowing the small salt
ions to move. The calculation included contributions from
the ion-ion, ion-macroion, and macroion-macroion electro-
static interactions. In addition, they considered contributions
from ion-ion and ion-macroion dispersion forces. The
macroion-macroion van der Waals dispersion interaction was
not included in the Monte Carlo calculation, but added sepa-
rately. The concentration of the salts was held constant at
0.2 M. At this relatively large salt concentration, the Debye
length is such that the electrostatic forces are strongly
screened. Consequently, ion dispersion forces dominate the
electrostatic forces in this regime. They repeated the simula-
tion for different macroion separations and thus determined
the PMFs for the three different salts. The solute particle was
chosen to mimic properties of HEW lysozyme, i.e., it has a
net charge of 10e and a diameter of 3.3 nm. The total inter-
action between two lysozyme molecules in the aqueous so-
lution obtained in Ref. [17] is the sum of a hard-core inter-
action, Wyg, the potential of mean force obtained from a
Monte Carlo simulation, Wy, and the protein-protein van
der Waals (Hamaker) dispersion interaction, W, g, i.€.,

Wior = Was + Wy + Wyaw, (1)
where
WvdW(r)=_£|: 202 + f+21n<1 - f)} r>o+2k
12 - r?
(2)
and
Woaw(r) = Woaw(o+2k), o<r<o+2k. (3)

The hard-sphere potential is infinite for r<o and zero oth-
erwise. The potential Wy, is set to zero for r>1.30. The
lysozyme-lysozyme dispersion interaction assumes a
hydration-layer thickness of k=1.5 A and a Hamaker con-
stant of H=10kT,, where T,=298 K. In addition, the total
potential is assumed to be temperature independent for the
range of temperatures that we study [17]. In Fig. 1, we have
plotted the total potential, W, for the NaCl and NaCSN
electrolyte cases. The potential between the macroions be-
comes more attractive from NaCl to NaSCN, which is con-

PHYSICAL REVIEW E 78, 011921 (2008)

L
coo
arivo

| |
LI
N = 0

Wiai/kTo

12 14 16 1.8 2 22
/o

D
2

Wiot/! kTO
|

|
:—O\Ul-lk’\»)l\l—‘o

o
=
=

5

FIG. 1. Total lysozyme potentials for the (a) NaCl and (b)
NaSCN electrolyte cases.

sistent with experimental observation that NaSCN is more
effective in precipitating hen-egg white lysozyme than, for
example, NaCl. We note that the model of Bostrom et al. has
two discontinuities, as shown in Fig. 1. The first originates
from the discontinuity intrinsic to W 4w at r=1.09090. Bos-
trom et al. refer to Ref. [20], which argues that since the
dispersion potential is based on a continuum approximation
for the solvent that is invalid for surface-to-surface separa-
tions on the order of a solvent diameter, the hydration layer
thickness « determines the limit of validity of the van der
Waals interaction. This is the reason for the cutoff used for
W, aw- The reason for introducing the second cutoff in Wy,
at r=1.30 is simply that this potential is essentially zero
beyond this point. We also note that it is possible that a
different model, obtained by a different approximation for
Wiaw at r=1.09090, could have an effect on the phase dia-
gram, but this is beyond the scope of our current study.

B. Simulation techniques

All of our Monte Carlo simulations for W, were con-
ducted for a system of 512 particles in cubic boxes subject to
periodic boundary conditions. The same number of Monte
Carlo steps were performed for both equilibration and pro-
duction, although the total number varied depending on the
type of simulation. For all simulations, we set =1 and so
the subsequent equations containing terms in p are to be
interpreted as the reduced number density, i.e., p=po” with
o=1.

1. Fluid-fluid coexistence

We used the Gibbs ensemble Monte Carlo method [21,22]
to obtain the fluid-fluid coexistence curve. This method
avoids problems associated with the formation of an inter-
face between the dense and dilute fluid phases. Two physi-
cally separate but thermodynamically connected simulation
cells are used to mimic the two fluid phases. Standard par-
ticle displacements are performed within each simulation
cell; in addition, volume and particle exchange are per-
formed between the two cells. These exchanges are chosen

011921-2



HOFMEISTER EFFECT AND THE PHASE DIAGRAM OF...

2.5
S15

0.5

02 04 06 08 1 12
p

FIG. 2. Liquid and solid isotherms for NaCl at 7/T,=1.0. X are
the Monte Carlo simulation results and the solid curves are the fits
to the data.

such that the total volume and number of particles of the
system are conserved and the simulations obey detailed bal-
ance. On average, we chose the ratio of particle displace-
ments to volume moves to be 512:1; the frequency of par-
ticle transfers was chosen to give reasonable acceptance rates
of approximately 1-5 %. The equilibrium and production run
times were at least one billion Monte Carlo steps (MCS)
each, with a MCS being an attempt at one of three possible
moves: particle displacement, volume change, or particle ex-
change.

2. Fluid-solid coexistence

Fluid-solid coexistence curves can often be determined
via the Gibbs-Duhem method [23]. This method involves
integrating the first-order Clausius-Clapeyron equation

dP _ Ah
dg~  BAv’

where P is the pressure and B=1/kT. A indicates a differ-
ence between the two coexisting phases, i.e., liquid and solid
phases in this case. Thus A/ and Av are the differences in the
molar enthalpies and molar volumes, respectively, of the two
phases. One caveat to this approach is that it requires the
knowledge of an initial coexistence point on the BP-Bu
plane; see Fig. 4 for example. Consequently, we carried out a
series of NPT simulations along an isotherm to determine the
equation of state for both the fluid and solid phases. We show
in Fig. 2 our results for the liquid and solid isotherms (for the
NaCl solution) at a particular temperature. The equilibrium
and production times for each NPT simulation were taken to
be equal and at least 400 million MCS.
The isotherms were then fitted to the following forms:

_p P\ (p )3 .
BP_(]—ap)+b<l—ap) +c —ap (liquid),
(5)

(4)

BP=ap*+bp+c (solid), (6)

where p is the number density. Equations (5) and (6) are
integrated to yield free energy for the corresponding state,
and since

P
Bu=pBf+ ﬂ;, (7

we can obtain the equations for the chemical potential,
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TABLE I. Best-fit parameters for isotherms.

Salt Isotherm a b c
NaCl Liquid 0.5482 -0.9596 0.9599
Solid 1410.16 -3028.45 1625.95
NaSCN Liquid 0.5008 -0.9942 0.8016
Solid 1371.90 -3136.56 1789.48
pA? bla—cla*+1 ¢/2a*+bp cp?
B =1n + + Tt 5
l—ap l-ap (I1-ap)®  (1-ap)
—(bla=cl2d®>+1), (8)

Bug=2ap+b(lnp+1) = (ap* +b In p* —c/p*) + Bf*(p*)
+1In(A%p*) -1, )

where A=\h*/2mkT is the thermal de Broglie wavelength.
The value of A plays no role in the location of phase equi-
libria for classical systems. Table I shows the parameters that
best fit our Monte Carlo data for the liquid and solid iso-
therms for the two salts.

The p* in Eq. (9) is a result of the integration and denotes
a reference state whose free energy must be predetermined
from a series of independent simulations. To calculate this,
we use the Frenkel-Ladd method [24] to harmonically couple
lysozyme particles to a lattice, i.e., an Einstein crystal. The
potential energy of this system is

N
WN) = Wi+ N2 (7= 7)%, (10)

i=1

where r; is the position of the lattice site to which particle i
is coupled, r; is the position of the particle, and X\ is the
coupling parameter. The free energy of the lysozyme system

is then
)‘max
FLys = F)\max - L AN(W(r, M)y
}\max N
=F>\max—J d\ E(;i_FO,i)z : (11)
0 i=1 N

At sufficiently high values of A\, i.e., the coupling is
sufficiently strong, the system behaves as a noninteracting
Einstein crystal, the free energy of which can be calculated
exactly. We can then obtain F g via thermodynamic integra-
tion along a reversible path. The mean-squared displacement
of particles relative to their lattice positions is calculated by
simulation in a system with a fixed center of mass. In Fig. 3,
we show the relative mean-squared displacement as a func-
tion of the coupling parameter. It can be seen that for suffi-
ciently large A, the system behaves as an Einstein lattice and
thus the reversible path has been established.

Once the chemical potentials of both phases are obtained
at the same temperature, we obtain the coexistence points by
equating the chemical potential and the pressure for the two
phases (Fig. 4). We denote the coexisting temperature and
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FIG. 3. Monte Carlo data of the mean-squared displacements for
the coupled solid in the NaCl system (diamonds) compared with
that of an Einstein lattice (solid line). To achieve deviations of less
than 1% with the Einstein lattice, a \,, of 260 000 was required.

pressure to be 7, and P, respectively. We then use the
Gibbs-Duhem method to generate the entire coexistence
curve. A simple predictor-corrector algorithm was used for
the integration. The basic idea is as follows. Since 4 and v at
(T,,P,) can be obtained conveniently from our previous
simulations for the coexisting densities, equation (11) can
then be used to estimate the coexisting pressure P, . for the
next temperature T, (prediction). Next, two NPT simulations
are executed in parallel at (T, P, ) and we obtain another
set of 7 and v values. By taking the average of the two sets
of h’s and v’s, we obtain a more accurate estimate for P,
(correction). Finally, two new NPT simulations at (7,,P,)
are carried out to give the coexisting densities at 7. This
process is repeated until the entire fluid-solid coexistence
curve is obtained.

III. RESULTS

Our Monte Carlo results yield a metastable fluid-fluid
phase for the 0.2 M NaCl lysozyme solution, Fig. 5. This is
not surprising since the range of attraction is small with re-
spect to the particle diameter. It is known in the case of
square-well fluids that the threshold for metastability begins
for ranges less than about 1.25¢ [25]. Though the potentials
we study are quite different from square wells, one can make
a comparison following a treatment by Noro and Frenkel
[26], in which the effective range of a potential is estimated
by equating the reduced second virial coefficients, B;‘ ,of a
square-well system with the system in question. This yields
an effective square-well range of approximately 1.130, so
that our Monte Carlo prediction of a metastable fluid-fluid
curve is consistent with the estimate of Noro and Frenkel. (In

FIG. 4. BP—-pBu plot for the NaSCN system at ;TO=3.5. Dashed
line for liquid; solid line for solid.
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FIG. 5. Phase diagram obtained from Monte Carlo simulations
for the aqueous lysozyme solution with NaCl electrolyte at 0.2 M.
The fluid-fluid separation curve is metastable.

general, this effective range is temperature-dependent; how-
ever, the variation of B: in the region of interest is small.)
Another measure of the metastability of the phase separation
curve is the so-called metastability gap, defined as
(T,—T,)/T,. For NaCl, we find that this gap is 8.1%.

The phase diagram for the 0.2 M NaSCN lysozyme solu-
tion is shown in Fig. 6. Again, following the treatment of
Noro and Frenkel, we estimate the effective range to be ap-
proximately 1.130. The metastability gap for NaSCN is es-
timated to be 18%, which is much bigger than the 5% esti-
mated from perturbation theory. In both the NaCl and
NaSCN cases, the effective range falls within the region of
metastability for square-well fluids [25].

Estimates of the critical points for our finite system were
obtained by fitting the fluid-fluid coexistence data to the fol-
lowing equations:

pitp

—’iz =p.+A|T-T,, (12)
pi—p,=B|T-T,, (13)

where T, and p. are the critical temperature and density,
respectively, and 8=0.326 is the 3D-Ising critical exponent.
Finite-size effects would have to be taken into account to
obtain the critical point parameters for the infinite system.
Table II contains a summary of the critical parameters and
fitting parameters for the two systems investigated.

38 . .
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a4t ‘s .
40 02 04 06 08 10 12

FIG. 6. Phase diagram curve obtained from Monte Carlo simu-
lations for the aqueous lysozyme solution with NaSCN electrolyte
at 0.2 M. The fluid-fluid separation curve is metastable.
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TABLE II. Critical parameters.

Salt T./T, Pe A B B}
NaCl 0.700 0.392 0.54 1.69 -1.42
NaSCN 2.636 0.395 0.48 1.40 -1.40

In addition, we have calculated the reduced second virial
coefficients at their respective critical temperatures,

[’

B,  =By/Byys=1+3 J s (1= ePMal)ds,  (14)
1

where s =r/ o for each system. In both salt cases, B: is small
and negative, consistent with experimental observations for
systems that undergo metastable fluid-fluid transitions. In
particular, for lysozyme solutions with 0.2 M NaCl, the ex-
perimental reduced second virial coefficient is estimated to
be —0.5 (see, e.g., Ref. [32]).

To the best of our knowledge, no experimental data exist
for a 0.2 M NaCl lysozyme solution, nor do any experimen-
tal data on phase diagrams exist for NaSCN lysozyme solu-
tions. However, for solutions with 0.5 M or greater concen-
trations of NaCl, experimental data are available. This data
do indeed show the presence of a metastable fluid-fluid phase
for salt concentrations greater than 0.5 M [27].

IV. CONCLUSION

Our predicted phase diagrams for NaCl and NaSCN
lysozyme solutions have been obtained using standard Monte
Carlo techniques. It is clear that the model we study is an
improvement over earlier models of lysozyme in that it can
account at least qualitatively for the Hofmeister effect. How-
ever, we find that our results are rather different from those
predicted by Bostrom et al., as one might expect. In both the
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NaCl and NaSCN cases, the liquid-liquid curve is metastable
with respect to the liquid-solid transition. In contrast to their
predictions using first-order perturbation theory, our Monte
Carlo results show that the liquid-liquid curve for the NaCl
system is metastable with a gap of 8%. In the case of
NaSCN, our results show a larger metastability gap than ob-
tained from the perturbation theory; the Monte Carlo results
yield a gap of 18%. It should also be noted that although the
effective range (as defined in Sec. III and Ref. [26]) and
reduced second virial coefficient are almost the same for the
NaCl and NaSCN models, details such as T,./T, and the
metastability gap are rather different. This is due to the quan-
titative differences between the potentials of mean force for
the two models, such as the much larger well depth for the
NaSCN case.

It is possible that the potential of mean force calculated in
Ref. [17] needs to be improved. For example, the model for
the protein could be improved to take into account a more
realistic description of the amino acid charge distribution on
the protein surface. Another effect that might need to be
investigated is the effect of the buffer on the potential of
mean force. The buffer is usually added to obtain the right
pH, otherwise it is assumed to have no further influence, but
it is conceivable that there could be large buffer effects on
the potential of mean force [28]. Further, it is possible that
isotropic models such as these (i.e., models that are indepen-
dent of macromolecule orientation) cannot account for such
quantitative features as the breadth of the coexistence curve,
and that one must take into account the effects of anisotropy
[29-31] on the interactions that can arise from a variety of
sources, including that of water.
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